Supramolecular design of self-assembling nanofibers for cartilage regeneration.
نویسندگان
چکیده
Molecular and supramolecular design of bioactive biomaterials could have a significant impact on regenerative medicine. Ideal regenerative therapies should be minimally invasive, and thus the notion of self-assembling biomaterials programmed to transform from injectable liquids to solid bioactive structures in tissue is highly attractive for clinical translation. We report here on a coassembly system of peptide amphiphile (PA) molecules designed to form nanofibers for cartilage regeneration by displaying a high density of binding epitopes to transforming growth factor beta-1 (TGFbeta-1). Growth factor release studies showed that passive release of TGFbeta-1 was slower from PA gels containing the growth factor binding sites. In vitro experiments indicate these materials support the survival and promote the chondrogenic differentiation of human mesenchymal stem cells. We also show that these materials can promote regeneration of articular cartilage in a full thickness chondral defect treated with microfracture in a rabbit model with or even without the addition of exogenous growth factor. These results demonstrate the potential of a completely synthetic bioactive biomaterial as a therapy to promote cartilage regeneration.
منابع مشابه
Gd(III)-Labeled Peptide Nanofibers for Reporting on Biomaterial Localization in Vivo
Bioactive supramolecular nanostructures are of great importance in regenerative medicine and the development of novel targeted therapies. In order to use supramolecular chemistry to design such nanostructures, it is extremely important to track their fate in vivo through the use of molecular imaging strategies. Peptide amphiphiles (PAs) are known to generate a wide array of supramolecular nanos...
متن کاملSelf-organization of a chiral D-EAK16 designer peptide into a 3D nanofiber scaffold.
Self-assembling peptide nanofiber scaffolds are an excellent material for applications such as tissue repair, tissue regeneration, instant stopping of bleeding, and slow drug release. We report a new self-assembling peptide D-EAK16 consisting purely of D-amino acids. D-EAK16 and L-EAK16 display mirror-image CD spectra at 20 degrees C. Like L-EAK16, D-EAK16 self-assembles into nanofibers, thus d...
متن کاملpH and Amphiphilic Structure Direct Supramolecular Behavior in Biofunctional Assemblies
Supramolecular self-assembly offers promising new ways to control nanostructure morphology and respond to external stimuli. A pH-sensitive self-assembled system was developed to both control nanostructure shape and respond to the acidic microenvironment of tumors using self-assembling peptide amphiphiles (PAs). By incorporating an oligo-histidine H6 sequence, we developed two PAs that self-asse...
متن کاملSelf-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury.
Peptide amphiphile (PA) molecules that self-assemble in vivo into supramolecular nanofibers were used as a therapy in a mouse model of spinal cord injury (SCI). Because self-assembly of these molecules is triggered by the ionic strength of the in vivo environment, nanoscale structures can be created within the extracellular spaces of the spinal cord by simply injecting a liquid. The molecules a...
متن کاملInjectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells.
BACKGROUND Promoting survival of transplanted cells or endogenous precursors is an important goal. We hypothesized that a novel approach to promote vascularization would be to create injectable microenvironments within the myocardium that recruit endothelial cells and promote their survival and organization. METHODS AND RESULTS In this study we demonstrate that self-assembling peptides can be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 8 شماره
صفحات -
تاریخ انتشار 2010